UUCMS NO

B.M.S COLLEGE FOR WOMEN AUTONOMOUS
 BENGALURU -560004

END SEMESTER EXAMINATION - APRIL/ MAY 2023

M.Sc. Mathematics - I Semester ELEMENTARY NUMBER THEORY

Course Code MM107S

Duration : 3 Hours

QP Code: 11006
Maximum Marks: 70

Instructions: 1) All questions carry equal marks.
2) Answer any five full questions.

1. (a) State and prove division algorithm.
(b) Determine all solutions in the set of integers of the diophantine equation

$$
\begin{equation*}
172 x+20 y=1000 \tag{7+7}
\end{equation*}
$$

2. (a) State and prove fundamental theorem of arithmetic.
(b) If the square root of a positive integer m is rational, show that m is a perfect square.
3. (a) Show that $a \equiv b(\bmod m)$ if and only if $a c \equiv b c(\bmod m)$ for any $c>0$.
(b) State and prove Euler-Fermat theorem.
(c) Find all the positive integers n for which $n^{17} \equiv n(\bmod 4080)$.
4. (a) State and prove Lagrange's theorem for polynomial congruences $\bmod p$.
(b) Solve the simultaneous congruences:
(i) $x \equiv 1(\bmod 3)$
$x \equiv 2(\bmod 4)$
$x \equiv 3(\bmod 5)$
(ii) $x^{2}+2 x+2 \equiv 0(\bmod 5)$
$7 x \equiv 3(\bmod 11)$
5. (a) If p is an odd prime, prove that every reduced residue system $\bmod p$ contains exactly $\frac{p-1}{2}$ quadratic residues and exactly $\frac{p-1}{2}$ quadratic non-residues $\bmod p$. Also show that the quadratic residues belong to the residue classes containing the numbers $1^{2}, 2^{2}, 3^{2}, \ldots,\left(\frac{p-1}{2}\right)^{2}$.
(b) Define Legendre symbol (n / p). Prove that the Legendre symbol (n / p) is a completely multiplicative function of n.
(c) Evaluate the Legendre symbol $(11 / 23)$ using Gauss lemma.
6. (a) If p is an odd prime, show that that $\sum_{r=1}^{p-1} r(r / p)=0$ if $p \equiv 1(\bmod 4)$.
(b)If P and Q are odd positive integers such that $(P, Q)=1$, prove that $(P / Q)(Q / P)=(-1)^{\frac{(P-1)(Q-1)}{4}}$.
(c)If p is an odd prime and $(a, p)=1$, prove that the diophantine equation $x^{2}+p y+$ $a=0$ has an integral solution if and only if $(-a / p)=1$.
7. (a) If p is a prime and $(a, p)=1$, prove that the linear congruence $a x \equiv y(\bmod p)$ has a solution $\left(x_{0}, y_{0}\right)$, where $0<\left|x_{0}\right|<\sqrt{p}$ and $0<\left|y_{0}\right|<\sqrt{p}$
(b) Show that any prime p of the form $4 k+1$ can be represented uniquely as a sum of two squares.
(c) Express 6409 as a sum of two squares.
8. (a) Prove that any prime p can be expressed as the sum of four squares.
(b) Show that all the solutions of the Pythagorean equation $x^{2}+y^{2}=z^{2}$ satisfying the conditions $(x, y, z)=1,2 / x, x>0, y>0, z>0$ are given by $x=2 s t, y=s^{2}-$ $t^{2}, z=s^{2}+t^{2}$ for integers $s>t>0$ such that $(s, t)=1$ and $s \not \equiv t(\bmod 2)$.
